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Text as data



Language is the medium for politics and policy

Language is the medium for politics and political conflict. Candi-
dates debate and state policy positions during a campaign. Once
elected, representatives write and debate legislation. After laws
are passed, bureaucrats solicit comments before they issue regu-
lations. Nations regularly negotiate and then sign peace treaties,
with language that signals the motivations and relative power of
the countries involved. News reports document the day-to-day
affairs of international relations that provide a detailed picture of
conflict and cooperation. Individual candidates and political par-
ties articulate their views through party platforms and manifestos.
Terrorist groups even reveal their preferences and goals through
recruiting materials, magazines, and public statements.

(Grimmer and Stewart 2013)
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The problem: Too much text to read!
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“Why Text Mining May Be The
Next Big Thing”

Time Magazine, March 20, 2012



Text mining as data



Computer-assisted content analysis

We emphasize that the complexity of language implies that au-
tomated content analysis methods will never replace careful and
close reading of texts. Rather, the methods that we profile here are
best thought of as amplifying and augmenting careful reading
and thoughtful analysis. Further, automated content methods are
incorrect models of language. This means that the performance
of any one method on a new data set cannot be guaranteed, and
therefore validation is essential when applying automated content
methods.

(Grimmer and Stewart 2013, emphasis in original)
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Four principles of text as data

Grimmer and Stewart (2013) outline four general principles that are
absolutely essential to keep in mind when using text as data:

Principle 1: All Quantitative Models of Language Are Wrong—But Some
Are Useful.

Principle 2: Quantitative methods for text amplify resources and augment
humans.

Principle 3: There is no globally best method for automated text analysis.

Principle 4: Validate, Validate, Validate.
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Disclaimer: programming required!

Off-the-shelf software: There are a number of “off-the-self” software
solutions for text analysis (e.g., WordStat). However, this software is
expensive and lacks flexibility.

Open-source solutions: There are a number of excellent open-source
alternatives for text mining.

1 R: There are a number of different options to choose from, but I
highly recommend taking a look at quanteda.

2 Python: My personal preference!
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Why Python?

Why Python?

1 Any language named after the
Monty Python is worth giving a
try!

2 It’s easy

3 It’s fast enough (and pretty easy
to speed up)

4 Large user community

5 It is becoming the industry
standard for scientific
computing.
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Why Python?
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Why Python?
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Learning Python

There are hundreds (maybe thousands) of resources to learn Python on
the web. Here are some of my favorites:

Online courses: Codeacademy’s Learn Python course
(https://www.codecademy.com/learn/learn-python)

Books: A Byte of Python (https://python.swaroopch.com/)

Q-Step Workshop: Iulia runs an introductory workshop on Python
(http://vle.exeter.ac.uk/mod/folder/view.php?id=692789)

We recommend installing the Anaconda distribution of Python
(https://conda.io/docs/user-guide/install/download.html).
Detailed instructions on installation are available at the following: XXX.
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Popular text analysis libraries in Python

There are a large number of Python libraries (or “modules”) that are
useful for text analysis. Several of the most popular include:

The Natural Language Toolkit (NLTK) (https://www.nltk.org/)

scikit-learn (http://scikit-learn.org/stable/)

gensim (https://radimrehurek.com/gensim/)

spaCy (https://spacy.io/)

These libraries are a “must have” for doing text analysis in Python!
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I. Prepocessing



“Standard” preprocessing decisions

There are a number of “standard” preprocessing steps that researchers
carryout prior to a text as data project. The main steps include:

Tokenization: Splitting documents into smaller units of analysis
(typically words).

Stopword removal: Removing frequently occurring words that add
little information to a text.

Removing numbers: Typically, numbers do not add much to a
particular analysis (note: this is not always true however!)

Normalization: stemming or lemmatizing

Let’s take a look at preprocessing in Python.
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II. Dictionary-based methods



What are dictionary-based methods?

Dictionaries (or “lexicons”) offer perhaps the simplest method to classify
the content of a particular document. In their simplest form, you are
simply counting the number of words in a document that appear in the
dictionary, and then dividing by the total number of words. That’s it!
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An important use of dictionaries: sentiment analysis
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An important use of dictionaries: sentiment analysis

In a recent article comparing a large number of sentiment libraries, Ribeiro
et al. (2016) suggests that (overall) the VADER (Valence Aware
Dictionary and sEntiment Reasoner) rule-based system performed quite
well (see Hutto and Gilbert 2014 for details on the algorithm).

We can call VADAR from Python after installing the vadarSentiment
library (https://github.com/cjhutto/vaderSentiment):

pip install vadarSentiment

Let’s take a look at VADAR in action.
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III. Unsupervised learning



What is unsupervised learning?

Unsupervised learning is a type of machine learning algorithm
used to draw inferences from datasets consisting of input data
without labeled responses. The most common unsupervised learn-
ing method is cluster analysis, which is used for exploratory data
analysis to find hidden patterns or grouping in data.

(MathWorks)
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What’s a topic model?

Generally speaking, topic models offer an unsupervised approach to
extracting the themes (or “topics”) present in a large corpus of data.
Topic models are described in various ways across the literature:

1 Yet another set of clustering algorithms in a long line of clustering
algorithms.

2 A data reduction technique

3 An unsupervised classification algorithm

4 (my take) A set of algorithms to automatically (sort of) learn the
dictionary keywords described last week.

Topic models are all of these things!



The LDA model

Latent Dirichlet allocation (LDA) is a generative probabilistic model
of a corpus. The basic idea is that documents are represented as
random mixtures over latent topics, where each topic is charac-
terized by a distribution over words.

(Blei et al. 2003, p. 996)

The Latent Dirichlet Allocation (LDA) model is the post popular topic
model. It has been shown to be useful in a wide-range of research fields and
has severed as the basis for many extensions over the past decade.
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The LDA’s generative story



The big picture: Words + model to estimate 2 matrices

The model parameters are as follows (from left to right):

α: prior distribution for the topic distribution (1 x K).

θd : the topic distribution for document d (1 x K)

zi,n: topic assignment for word n in document d .

wi,n: word n in document d .

φk : the so-called word distribution.

β: prior distribution for the so-called word distribution.



Inferring φ and θ in Python

We will use the gensim library to estimate topic models in Python. As per
usual, open the Anaconda prompt and type:

pip install gensim

Let’s see the gensim library in action!
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Exploring your topic solution: PyLDAvis
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What constitues a “quality topic”

If “fit” alone is a poor indicator of topic quality, the next question is how
should we conceptualize (and measure) topic quality. The literature tends
to focus on two main qualities of “good” topics:

1 They are semantically coherent—i.e., the semantic relationships
between words aid in the understanding and interpretation of a topic.

2 They are exclusive—i.e., probable words for a particular topic are
unique to that topic. Put simply, probable words allow us to
discriminate across themes running through our corpus.

Various measures of these concepts have been proposed in the literature
(see Wallach et al. 2009).
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Using topics “as data”
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After estimating the LDA model and getting the document-topic
proportions, you can generate a wide variety of measures.
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Using topics “as data”
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Decisions, decisions, decisions

We need to make a number of decisions when estimating an LDA model.
Specifically, some key questions include:

1 How will you preprocess the text prior to inference?

2 How will you choose (or tune) hyperparameters?

3 How many topics will you choose? (difficult decision!)

4 How will you validate the model? (difficult decision!)
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What we didn’t have time to cover!
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