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metaphor: it is a
precise, mathematical
construct of nodes
(vertices, actors) N and
edges (ties, relations) E
that can be directed or
undirected. We can
include information
(attributes) on the
nodes as well as the
edges.

Think Formally
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Why network methods

We need a new language to describe what’s going on
Cannot simply use existing statistical methods
The whole point is that observations are interdependent

Want to explicitly model these interdependencies
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® Individuals

e (Collectives or aggregates
® Households
® Organizations
® Countries
® Other units
® Objects
® Locations
® Beliefs

Types of Actors



Types of Network Data

«O>» «Fr «E=)»

4

it
-

nae



Types of Network Data

® ‘Whole’ network data

«O>» «Fr «E=)»

4

it
-

DA



Types of Network Data

® ‘Whole’ network data

® graphs and digraphs

«O>» «Fr o«

it
-

DA



Social

Network
Analysis Types of Network Data
LJasny
Intro
Exercise
| ® ‘Whole’ network data
Structures ® graphs and digraphs
Data ® two-mode or bipartite graphs
Structures
Descriptives
More

descriptives



Social
Network
Analysis

LJasny

Intro

Types of Network Data

® ‘Whole’ network data
® graphs and digraphs
® two-mode or bipartite graphs

e Sampled networks



Social
Network
Analysis

LJasny

Intro

Types of Network Data

® ‘Whole’ network data
® graphs and digraphs
® two-mode or bipartite graphs

e Sampled networks
® ego networks



Social
Network
Analysis

LJasny

Intro

Types of Network Data

® ‘Whole’ network data

® graphs and digraphs

® two-mode or bipartite graphs
e Sampled networks

® ego networks
® respondent-driven sampled data (aka link-trace data,
depth or breadth first searches)



Social
Network
Analysis

LJasny

Intro

Types of Network Data

® ‘Whole’ network data
® graphs and digraphs
® two-mode or bipartite graphs

e Sampled networks

® ego networks

® respondent-driven sampled data (aka link-trace data,
depth or breadth first searches)

® somewhere in-between — start with a sample, and ask
respondents for additional ‘waves’ of data until no new
nodes are found
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® Exogenously defined — based on substantive theory or
research question
® Members of an organization
® Scientists working on high energy physics
® Endogenously defined — based on relations and social
closure of the set
® Laumann et al: “realist”
® Defined by the actors themselves
® Methodologically defined based on data collection
protocol — be careful!
® People communicating via a specific bulletin board,
radio channel, twitter hashtag
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Sampling

All kinds of reasons for sampling
¢ used when population is hard to find
® when population is too large

® when all the population just doesn’t want to respond
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Ego Networks

® Randomly select ‘egos’
¢ Find their alters

® Extract the sample
made up of the egos and
their alters
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e Randomly select one
‘start’ node

® Pick one of start’s alters

® Pick one of start’s alter’s
alters

® Select all of their alters
for the sample alters
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Boundary Networks

Set a boundary around
some subset of nodes

Select nodes within the
boundary

Collect their alters

They are your sample
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Intro ® Directed or Undirected?

® Undirected: marriage, lives next door to, has a
conversation with

® Directed: gives money to, has respect for, asks a
question of

® Do you have a directed relationship, or multiple
observations of an undirected relationship?

® And if so, should you symmetrize?

® Were responses constrained in some way?
® List up to 5
® Roster-based
® Who do you discuss ‘important questions’ with?

e Missing data

23-72
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the first column

Exercise

Take a sheet of paper and divide into 3 columns

Write the names of the last 10 people you spoke to in

Write their relationship to you in the next column

Write who introduced you to them in the third

Name | Relationship | Introduced by
Susan | Boss Travis

Chris Friend Jamie
Barbara | Mum No one
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e Flip the paper over

® Write each name
from the first
column spread out
on the page

® Draw a line
between two
people if they
know each other

Exercise
Chris
Amy
Susan
Tony
Barbara



Social

Network
frnelysis Data Structures
LJasny
n, n,
Allison Drew
[
Data
Structures . n3
Eliot
L ny
Keith

ROS S‘\_/ .
Sarah

26-72



Social

Network
Analysis Data Structures
LJasny
1, n,
Allison Drew
ny n9 ns Ty ns
Data n
Structures . 3 ny
Eliot n
Keith "3
[ 4
ns
D5

ne
ROS S‘\_/ .
Sarah

26-72



Social

Network
Analysis Data Structures
LJasny
1, n,
Allison Drew
ni Up) ns na ns
Data n
Structures . 3 ny 1
Eliot n
1’14 2
Keith "3
[ ] N4
ns
15

Ne
ROS S‘\_/ .
Sarah

26-72



Social

Network
Analysis Data Structures
LJasny
1, n,
Allison Drew
Ny N2 N3 N4 N3
Data n
Structures . 3 ny 1 1
Eliot n
Keith 3
[ N4
ns
s

Ne
ROS S‘\_/ .
Sarah

26-72



Social
Network
Analysis

LJasny

Data
Structures

26-72

Allison

Ross

n
1 n,

n,
Eliot
[

Keith

\—/ Sarah

Data Structures

ni Up) ns na ns Ng
ny 1 1
no 1 1
ns 1
na 1
ns5 1
ne 1



Social
Network
Analysis

LJasny

Data
Structures

26-72

n, n,
Allison Drew
o
D,
Eliot
[ ) n,
Keith
[
1’15 .
Ross .

\—/ Sarah

Data Structures

ni Up) ns na ns Ng
ny - 1 1
no - 1 1
ns 1 -
na - 1
ns5 - 1
Ng 1 -




Social

Network
Analysis
LJasny
n, n,
Allison Drew
Data n
Structures . 3
Eliot
L ny
Keith
n /
' @
Ross \_/ .
Sarah

26-72

Data Structures

ny N2 N3 N4 N5 Ng
ni - 1 0 0 1 0
o 0 - 1 1 0 0
ng | 0 1 -0 0 O
on 0 0 0 - 1 0
ns | 0 0 0 O -1
Ne 0 1 0 0 0 -




Social

Network
frnelysis Data Structures
LJasny
n, n,
Allison Drew
[
Data
Structures . n3
Eliot
L ny
Keith

ROS S‘\_/ .
Sarah

27-72



Social
Network
Analysis

LJasny

Data
Structures

27-72

n,

Allison Drew

Data Structures

Sender

Receiver

Weight




Social
Network

Pl Data Structures

LJasny

! n,
Allison Drew

Sender Receiver Weight

ny Up) 1
Data n3
Structures .
Eliot

ny
Keith

Ros S‘\_/ .
Sarah

27-72



Social

Network

Analysis

LJasny

M n,
Allison Drew
Data n
Structures . 3
Eliot
ny
Keith

ROS S‘\_/ .
Sarah

27-72

Data Structures

Sender Receiver Weight
ny Up) 1
ni ns 1
no ns 1
%) Neg 1
ns U 1
i ns 1
ns ng 1
Ne n9 1



Network Objects

«O»>» «Fr «=>»

4

it
v

Q>



Social

Network .
Analysis Network Objects
LJasny
® stores an adjacency matrix or an edgelist as well as
metadata
Data

Structures

28-72



Social
Network
Analysis

LJasny

Data
Structures

28-72

Network Objects

® stores an adjacency matrix or an edgelist as well as
metadata

® vertex, edge, and network attributes



Social
Network
Analysis

LJasny

Data
Structures

28-72

Network Objects

® stores an adjacency matrix or an edgelist as well as
metadata

® vertex, edge, and network attributes

® can use square-bracket notation just like a matrix



Social

i Network Objects
LJasny
® stores an adjacency matrix or an edgelist as well as
metadata
® vertex, edge, and network attributes
IDetir ® can use square-bracket notation just like a matrix

Structures

® if we have a network dataNet, then dataNet[,] returns
the adjacency matrix

28-72



Social
Network

Analysis Network ObJ ects

LJasny

® stores an adjacency matrix or an edgelist as well as
metadata
® vertex, edge, and network attributes
Dy ® can use square-bracket notation just like a matrix

Structures

® if we have a network dataNet, then dataNet[,] returns
the adjacency matrix

¢ Different notation for working with attribute data

28-72



Social
Network

Analysis Network ObJ ects

LJasny

® stores an adjacency matrix or an edgelist as well as
metadata
® vertex, edge, and network attributes
Dy ® can use square-bracket notation just like a matrix

Structures

® if we have a network dataNet, then dataNet[,] returns
the adjacency matrix
¢ Different notation for working with attribute data

® For vertex attributes, get.vertex.attributes,
set.vertex.attributes, list.vertex.attributes,
etc or %v% for shorthand

28-72



Social
Network

Analysis Network ObJ ects

LJasny

® stores an adjacency matrix or an edgelist as well as
metadata
® vertex, edge, and network attributes
Dy ® can use square-bracket notation just like a matrix

Structures

® if we have a network dataNet, then dataNet[,] returns
the adjacency matrix
¢ Different notation for working with attribute data

® For vertex attributes, get.vertex.attributes,
set.vertex.attributes, list.vertex.attributes,
etc or %v% for shorthand

® Similarly for edge attributes (%e¥%)

28-72



Social
Network

Analysis Network ObJ ects

LJasny

® stores an adjacency matrix or an edgelist as well as
metadata

® vertex, edge, and network attributes

Dy ® can use square-bracket notation just like a matrix

Structures

® if we have a network dataNet, then dataNet[,] returns

the adjacency matrix
¢ Different notation for working with attribute data

® For vertex attributes, get.vertex.attributes,
set.vertex.attributes, list.vertex.attributes,
etc or %v% for shorthand

® Similarly for edge attributes (%e¥%)

® And network level attributes (%n%)

28-72
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Network Objects

Network attributes:
vertices = 18
directed = TRUE
hyper = FALSE
Toops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 54
missing edges= 0
non-missing edges= 54

Vertex attribute names:
Group vertex.names

Edge attribute names:
order

> |
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Example

Network from the Climate Constituencies Project

Looks at Obama’s Clean Power Plan in 4 States and
National levels

® Organizational surveys and twitter

Nodes are orgs, edges are mentions of other orgs in a
tweet that is about CPP

https://www.youtube.com/watch?v=KHIWUgeNB7E&list=
PLA5s0tCt1X930LrwGp05mcOao2jt2viDc&index=3
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Informal Networks: The Company Behind the Chart
by David Krackhardt and Jeffrey R. Hanson (Harvard
Business Review July-August 1993)

The Advice Network Reveals the Experts

Data
Structures

Jules

Leers [CEO) Zanado Muller

Dayen Lang [SVP)

O’Hara (SVP]
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Informal Networks: The Company Behind the Chart
by David Krackhardt and Jeffrey R. Hanson (Harvard
Business Review July-August 1993)

But When It Comes to Trust...

Data
Structures Church
Les

lang [SVP| C’Hara/[SVP)

Calder {SVP] Ruiz Stewart

Leers {CEO]
Daven

Hobermon

Fleming Swinney

Thomas

Kibler
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Informal Networks: The Company Behind the Chart
by David Krackhardt and Jeffrey R. Hanson (Harvard
Business Review July-August 1993)

The Trust Network According to Calder

Fleming
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For each node, its degree is

Degree

® the number of nodes adjacent to it

® or, the number of lines incident with it

Lambeneschi.

Pucci

Ginori

Bischeri

Acciaiuoli

Salviati

Peruzzi

/ Castellani

Barbadori

Pazzi

Pucci has degree 0
Lamberteschi has degree 1
Guadagni has degree 4
Medici has degree 6
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Figure 2. Graph af Russian trade routes in the 12th - 13th cen.mrfas.
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Page Rank Algorithm

Lletv=[1,1,1,1,..1].
Repeat 100 times {
Letw=[0,0,0,0,...0].
For each personiin the social network
For each friend j of i
Set w(j] = w[j] + v[i].
Setv=w.
}
Let S be the sum of the entries of v.
Divide each entry of v by S.
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e Extent to which centrality is concentrated on a single
vertex

® (Calculated as the sum of the differences between each
node’s centrality score and the maximum score

® Most centralized structure is usually a star network
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® People in positions
passed messages to
one another to
solve a problem

® Studied the effect
of structure on

® Efficiency
® Leadership
® Satisfaction
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Bavelas Experiments

® Slowest to completion
® Most errors
® Most satisfied

® Fastest
® Fewest errors
® Most dissatisfied
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16 different triad types

Triad Census

i,j cell is the number
of triad type j
in network i
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Transitivity

Usually calculated as the
fraction of completed
two-paths

Related to Grannovetter’s
‘forbidden triad’

Can be directed or undirected
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“The evolution and formation of amicus curiae networks”
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A and B agree so A’s information
echoes B’s understanding.
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Other Triads

O

Transitive triad such that A sends information
to B and C, and B also sends information to C.
The smallest example of a ‘chamber.

d)

A transitive triad where each actor already
holds the same position — an echo chamber.



Social

Network
Analysis
LJasny
Representative Markey (D-MA)
16 actors, 90 ties, 82 chamber(s), 20 echo chamber(s)
Representative Inhofe (R-OK)
More 4 actors, 4 ties, 1 chamber(s), 1 echo chamber(s)
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Other Triads

Columbia University scientist
27 actors, 234 ties, 215 chamber(s), 39 echo chamber(s)

University of Alabama scientist
15 actors, 56 ties, 39 chamber(s), 4 echo chamber(s)

Disagree
* Strongly Disagree
* NoResponse
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Two-star
b) (popularity)
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Other Triads

Attribute Parameters

Outdegree for a binary parameter — the

e) @©—>( likelihood of this kind of node being

named as an info source

Outdegree for a valued parameter —
f) O—'O whether an increase in this

parameter is associated with

increased likelihood of being a source

Heterophily — the likelihood that we
g O—VO see a tie between two nodes with

very different values of a valued

attribute (negative homophily)

Transitive Triads with attributes — the

h) likelihood, above the tendencies for
homophily and transitive triads alone, to
see transitive triads with all the same
attribute values
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Forbidden Triad or
Structural Hole?

e Granovetter, Mark S. 1973.
“The Strength of Weak Ties”

v d

A B

F1c. 1.—Forbidden triad
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Forbidden Triad or
Structural Hole?

¢ Burt, Ronald S. 2004.
“Structural Holes: The Social
Structure of Competition”
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Extensions

Attributes!
® Properties of nodes, edges, or even networks

® Pretty much anything you can measure could be an
attribute

e Extension based on node attributes: Brokerage

® Extension based on edge attributes: Structural Balance
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Brokerage

Brokerage is a process “by which intermediary actors
facilitate transactions between other actors lacking
access to or trust in one another” (Marsden 1982)
Brokers play a crucial role in knitting together diverse
groups of people, organizations, parties

Brokers can gain a lot — early access to information,
prestige

But can also be distrusted by everyone
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In a network NV with
edges F,

node j brokers
nodes i and

if €ij € E

and e € B
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: Formal Concept
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Brokerage: Formal Concept

Gould and Fernandez (1989, 1994)
¢ formalized the concept
® added a vertex attribute component

e compared empirical brokerage counts to counts from
random graphs conditioned on the number of edges
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® the benefits of brokerage are mediated both by the type
of organization (the node sets) and the type of
brokerage chain

® non-governmental organizations were found to have

More more influence when they held any type of brokerage
descriptives ..
! position

e governmental organizations gained influence only when
they held “outsider” brokerage roles in itinerant and
liaison chains

62-72
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Stanley Milgram “The Small World Problem”, Psychology
Today, vol. 1, no. 1, May 1967, pp61-67
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Stanley Milgram “The Small World Problem”, Psychology
Today, vol. 1, no. 1, May 1967, pp61-67
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re-wires ties

Watts-Strogatz Model
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e Alternative network generating model

® Where Watts and Strogatz’s model results in a world
where everyone has approximately the same number of
ties,
® Barabasi and Albert thought about a skewed
More distribution of ties

descriptives

e Based on the idea of ‘preferential attachment’ aka ’rich
get richer’

e Unlike Watts-Strogatz, this model starts with one node,
add additional nodes one at a time

® Nodes ‘preferentially’ attach to those with higher degree

68-72



Barabasi-Albert Model

DA



Barabasi-Albert Model

«O>» «Fr «E=)»

4

it
-

DA



Social
Network

o Barabasi-Albert Model

LJasny

More °
descriptives

69-72



Social
Network

o Barabasi-Albert Model

LJasny

More °
descriptives

69-72



Social
Network
Analysis

LJasny

More
descriptives

69-72

Barabasi-Albert Model

©



Social
Network

o Barabasi-Albert Model

LJasny

More °
descriptives

69-72



Social
Network
Analysis

LJasny

More
descriptives

70-72

Barabasi-Albert Model




Social

Analyais Barabasi-Albert Model

LJasny
o
S
@
z g
§ [+
o
More si.-)- g
descriptives w
o
=}
~
o
[ T T T 1
0 10 20 30 40
degree

T1-72



Social
Network
Analysis

LJasny

More
descriptives

72-72

Barabasi-Albert Model
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k} = 5.46 (6). (C) Power grid data, N = 4941, (k} = 2.67. The dashed lines have

S10peS () Yactor = 23, (B) Yoy = 2.1 300 (0) Ypouer = 4

Barabési, A.-L.; R. Albert (1999). “Emergence of scaling in
random networks”. Science
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