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Think Formally

A network is not just a
metaphor: it is a
precise, mathematical
construct

of nodes
(vertices, actors) N and
edges (ties, relations) E
that can be directed or
undirected. We can
include information
(attributes) on the
nodes as well as the
edges.
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Why network methods

• We need a new language to describe what’s going on

• Cannot simply use existing statistical methods

• The whole point is that observations are interdependent

• Want to explicitly model these interdependencies
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Kinds of Network Relations

• Interaction (eg communication)

• Affective evaluation (eg love, hate, respect)

• Resource transfer or flow (eg trade)

• Movement (eg airline flights)

• Formal relationships (eg authority)

• Kinship

• Joint participation, membership, or association

• Logical implication

• . . .
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Types of Actors

• Individuals

• Collectives or aggregates
• Households
• Organizations
• Countries

• Other units
• Objects
• Locations
• Beliefs
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Types of Network Data

• ‘Whole’ network data
• graphs and digraphs
• two-mode or bipartite graphs

• Sampled networks
• ego networks
• respondent-driven sampled data (aka link-trace data,

depth or breadth first searches)
• somewhere in-between – start with a sample, and ask

respondents for additional ‘waves’ of data until no new
nodes are found
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Boundary Specification

• Exogenously defined – based on substantive theory or
research question
• Members of an organization
• Scientists working on high energy physics

• Endogenously defined – based on relations and social
closure of the set
• Laumann et al: “realist”
• Defined by the actors themselves

• Methodologically defined based on data collection
protocol – be careful!
• People communicating via a specific bulletin board,

radio channel, twitter hashtag
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Sampling

All kinds of reasons for sampling

• used when population is hard to find

• when population is too large

• when all the population just doesn’t want to respond
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Sampling

All kinds of samples

• Ego Networks

• Snowball and Trace
sampling

• Boundary setting
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Ego Networks
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Ego Networks

• Randomly select ‘egos’
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Ego Networks

• Randomly select ‘egos’

• Find their alters
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Ego Networks

• Randomly select ‘egos’

• Find their alters

• Extract the sample
made up of the egos and
their alters
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Trace Networks
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Trace Networks

• Randomly select one
‘start’ node

• Pick one of start’s alters

• Pick one of start’s alter’s
alters
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Trace Networks

• Randomly select one
‘start’ node

• Pick one of start’s alters

• Pick one of start’s alter’s
alters

• Select all of their alters
for the sample
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Trace Networks

• Randomly select one
‘start’ node

• Pick one of start’s alters

• Pick one of start’s alter’s
alters

• Select all of their alters
for the sample alters
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Boundary Networks

• Set a boundary around
some subset of nodes
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• Set a boundary around
some subset of nodes

• Select nodes within the
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some subset of nodes
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Boundary Networks

• Set a boundary around
some subset of nodes

• Select nodes within the
boundary

• Collect their alters

• They are your sample
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Data Collection Questions

• Directed or Undirected?
• Undirected: marriage, lives next door to, has a

conversation with
• Directed: gives money to, has respect for, asks a

question of
• Do you have a directed relationship, or multiple

observations of an undirected relationship?
• And if so, should you symmetrize?

• Were responses constrained in some way?
• List up to 5
• Roster-based
• Who do you discuss ‘important questions’ with?

• Missing data
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Exercise

• Take a sheet of paper and divide into 3 columns

• Write the names of the last 10 people you spoke to in
the first column

• Write their relationship to you in the next column

• Write who introduced you to them in the third

Name Relationship Introduced by

Susan Boss Travis

Chris Friend Jamie

Barbara Mum No one
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Exercise

• Flip the paper over

• Write each name
from the first
column spread out
on the page

• Draw a line
between two
people if they
know each other



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

26-72

Data Structures

n1 n2 n3 n4 n5 n6

n1

- 1 0 0 1 0

n2

0 - 1 1 0 0

n3

0 1 - 0 0 0

n4

0 0 0 - 1 0

n5

0 0 0 0 - 1

n6

0 1 0 0 0 -
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Data Structures

Sender Receiver Weight

n1 n2 1
n1 n5 1
n2 n3 1
n2 n6 1
n3 n2 1
n4 n5 1
n5 n6 1
n6 n2 1
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Network Objects

• stores an adjacency matrix or an edgelist as well as
metadata
• vertex, edge, and network attributes

• can use square-bracket notation just like a matrix
• if we have a network dataNet, then dataNet[,] returns

the adjacency matrix

• Different notation for working with attribute data
• For vertex attributes, get.vertex.attributes,
set.vertex.attributes, list.vertex.attributes,
etc or %v% for shorthand

• Similarly for edge attributes (%e%)
• And network level attributes (%n%)
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Example

• Network from the Climate Constituencies Project

• Looks at Obama’s Clean Power Plan in 4 States and
National levels

• Organizational surveys and twitter

• Nodes are orgs, edges are mentions of other orgs in a
tweet that is about CPP

https://www.youtube.com/watch?v=KHIWUgeNB7E&list=

PLA5s0tCtlX930LrwGpO5mc9ao2jt2v1Dc&index=3

https://www.youtube.com/watch?v=KHIWUgeNB7E&list=PLA5s0tCtlX930LrwGpO5mc9ao2jt2v1Dc&index=3
https://www.youtube.com/watch?v=KHIWUgeNB7E&list=PLA5s0tCtlX930LrwGpO5mc9ao2jt2v1Dc&index=3
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Examples

Informal Networks: The Company Behind the Chart
by David Krackhardt and Jeffrey R. Hanson (Harvard
Business Review July-August 1993)
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Descriptives

• One isolate

• Two components

• Diameter is 5

• Medici is most popular

• Three triads
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Degree

For each node, its degree is

• the number of nodes adjacent to it

• or, the number of lines incident with it

• Pucci has degree 0

• Lamberteschi has degree 1

• Guadagni has degree 4

• Medici has degree 6
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Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties
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• B has 1 outdegree and 3
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• C has 2 outdegree and 1
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• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree and 3
indegree

• C has 2 outdegree and 1
indegree

• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree and 3
indegree

• C has 2 outdegree and 1
indegree

• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree and 3
indegree

• C has 2 outdegree and 1
indegree

• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree

and 3
indegree

• C has 2 outdegree and 1
indegree

• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree and 3
indegree

• C has 2 outdegree and 1
indegree

• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree and 3
indegree

• C has 2 outdegree

and 1
indegree

• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree and 3
indegree

• C has 2 outdegree and 1
indegree

• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree and 3
indegree

• C has 2 outdegree and 1
indegree

• D has 1 outdegree

and 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

34-72

Directed Degree

In directed graphs,

• Indegree indicates the number of received ties

• Outdegree indicates the number of sent ties

A

B

C

D

• A has 1 outdegree

• B has 1 outdegree and 3
indegree

• C has 2 outdegree and 1
indegree

• D has 1 outdegreeand 1
indegree



Social
Network
Analysis

LJasny

Intro

Exercise

Data
Structures

Data
Structures

Descriptives

More
descriptives

35-72

Connecting Communities
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Betweenness Centrality

Proportion of shortest paths between all other pairs of
nodes that the given node lies on

A
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D

• A sits on no paths
between others

• B sits on some paths:
• A→ C

= 1

• A→ D

= 1

• C→ D

= 0

• D→ C

= 1

• C→ A

= 0

• D→ A

= 0
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Betweenness Centrality

Forrest Pitts 1978 “The River Trade Network of Russia,
Revisited”
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2∗M
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• Good visualizations – more similar networks should be
closer together
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Example

Janet Box-Steffensmeier and Dino Christenson
“The evolution and formation of amicus curiae networks”
Social Networks 2012
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• Granovetter, Mark S. 1973.
“The Strength of Weak Ties”
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Forbidden Triad or
Structural Hole?

• Burt, Ronald S. 2004.
“Structural Holes: The Social
Structure of Competition”
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Attributes!

• Properties of nodes, edges, or even networks

• Pretty much anything you can measure could be an
attribute

• Extension based on node attributes: Brokerage

• Extension based on edge attributes: Structural Balance
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Brokerage

• Brokerage is a process “by which intermediary actors
facilitate transactions between other actors lacking
access to or trust in one another” (Marsden 1982)

• Brokers play a crucial role in knitting together diverse
groups of people, organizations, parties

• Brokers can gain a lot – early access to information,
prestige

• But can also be distrusted by everyone
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In a network N with
edges E,

node j brokers
nodes i and k
if eij ∈ E
and ejk ∈ E
but eik /∈ E
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k
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Brokerage: Formal Concept

Gould and Fernandez (1989, 1994)

• formalized the concept

• added a vertex attribute component

• compared empirical brokerage counts to counts from
random graphs conditioned on the number of edges
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Coordinator

Representative Gatekeeper Itinerant Liaison
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Gould and Fernandez’ Findings

• the benefits of brokerage are mediated both by the type
of organization (the node sets) and the type of
brokerage chain

• non-governmental organizations were found to have
more influence when they held any type of brokerage
position

• governmental organizations gained influence only when
they held “outsider” brokerage roles in itinerant and
liaison chains
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Small Worlds

What are the characteristics of real world?
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Small Worlds

Stanley Milgram “The Small World Problem”, Psychology
Today, vol. 1, no. 1, May 1967, pp61-67
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Watts-Strogatz Model

• high clustering
coefficient

• low diameter

• starts with a
lattice structure

• randomly
re-wires ties
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Watts-Strogatz Model
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Watts-Strogatz Model
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Barabasi-Albert Model

• Alternative network generating model

• Where Watts and Strogatz’s model results in a world
where everyone has approximately the same number of
ties,

• Barabasi and Albert thought about a skewed
distribution of ties

• Based on the idea of ‘preferential attachment’ aka ’rich
get richer’

• Unlike Watts-Strogatz, this model starts with one node,
add additional nodes one at a time

• Nodes ‘preferentially’ attach to those with higher degree
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Barabasi-Albert Model
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Barabasi-Albert Model
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Barabasi-Albert Model

Barabási, A.-L.; R. Albert (1999). “Emergence of scaling in
random networks”. Science
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