UUUUUUUUUUUUU

EXETER G e soc
Q-STEP CENTRE Funded by the

Q-Step ESRC and HEFCE

Introduction to SQL for Data
Sclence

Q-Step Workshop —20/03/2019

Lewys Brace
|.brace@Exeter.ac.uk

Nuffield Foundation,

Introduction

* The role of a data scientist is to turn raw data into actionable
insights.
* Much of the world's raw data, such as electronic medical records and

customer transaction histories, lives in organized collections of tables
called relational databases.

* Therefore, to be an effective data scientist, you must know how to
wrangle and extract data from these databases using a domain-
specific language called SQL (Structured Query Language).

Relational databases

* You can think of a relational database as a collection of tables.

* Atableis just a set of rows and columns, like a spreadsheet, which represents exactly
one type of entity; i.e. a table might represent employees in a company or purchases
made, but not both.

* Each row, or record, of a table contains information about a single entity; i.e. in a table
representing employees, each row represents a single person.

* Each column, or field, of a table contains a single attribute for all rows in the table; i.e.
in a table representing employees, we might have a column containing first and last
names for all employees.

1 Jessica 22 reland

Gabriel 48 France

o]

Laura 36 USA

(4%

The practice database

* For this course, we are going to be writing and implementing our SQL
code within Microsoft Access.

 We'll be using a database that details various aspects of different
dinosaur species.

* This database can be downloaded from
https://github.com/LewBrace/Q-Step SQL workshop.

* Download and open this database

https://github.com/LewBrace/Q-Step_SQL_workshop

Selecting a single column

* While SQL can be used to create and modify databases, the focus of
this course will be querying databases.

* A query is a request for data from a database table, or combination of
tables.

* Querying is an essential skill for a data scientist, since the data you
need for your analyses will often live in databases.

Opening the SQL editor

] s CREATE = EXTERNAL DATA

==l il =l = 5 Rl HOME
2 e ey i
Design Lists - Wizard Design View Paste =9
Tables Queries 6 #, Fo
Views Clipbo:

Show Table - B |

The SQL View Object tab has
made the (very rational) = quent\

assumption that you want to >
retrieve some information
from the Sheetl table, so it has
written the first part for you.
It doesn’t know exactly what
you want to retrieve, so it

4 displays only the part it feels
confident about.

3 [Add] [Close]

Selecting a single column

* |n SQL, you can select data from a table using a SELELT statement; i.e. the following
query selects the Species column from the Sheetl table.

* The semi-colon tells SQL where the end of your query is.

ﬁ Queryl

SELECT Species
FROM Sheetl;

 |n SQL, SELECT and FROM are keywords.

* Keywords in SQL are not case-sensitive, which means that the following would
also work.

=H Queryl

select Species
from Sheetl;

* However, convention dictates that writing keywords in uppercase is "best
practice’.

* Once you're done coding your query, save it.

rSaveAs @Iﬂj
1 I E (_')T Query Mame:
FILE HOME) el || Queryd
[Ok][Cancel]

* Your query can then be executed by clicking on the corresponding
guery tab in the left-hand panel.

All Access Obje... = « T Quey1

Species -
Search. e P
Tables -3
Stegosaurus
j Sheetl g
i Tyrannosaurus
Quernies * i
= Diplodocus
q B ueryl .
3 Query Coelophysis
Majungasauru:
Camarasaurus

Giganotosauruy
Velociraptor

Fukuiraptor

Selecting multiple columns

* Selecting multiple columns is easy enough.

* Just add the extra column names to the code, separated by commas.

|ﬂ ? Q_UEF}"E DI_lt' ﬁ:‘ Query?2
SELECT Species, Family] ' Species "~} Family -
FROM Sheetl: ! Triceratops Ceratopsian

Stegosaurus Ankylosaurid
Tyrannosaurus Large Theropo
Diplodocus Sauropod

Coelophysis Small Theropo
Majungasauru: Large Theropo
Camarasaurus Sauropod

Giganotosauru Large Theropo
Velociraptor Small Theropo

* You can select all columns in a table by using ™.

it A | b D 1D ~| Species -~ Family - Existence p¢ - Existed fron - |Existed unti - Diet ~ |Average we - Average len - Areal Area2 - Area 3 -
|I'I: ﬁ] Query3 Ut: !Triceratops Ceratopsian Late Cretaceol 68 66 Herbivore 3500 9 USA

SELECT * 2 Stegosaurus Ankylosaurid Late Jurassic 155 145 Herbivore 2000 9 USA

FROM Sheetl: 3 Tyrannosaurus Large Theropo Late Cretaceol 68 66 Carnivore 7000 12 Canada UsA

Retrieving a range of records

* You can run a query for the top x rows of data by using the SELECT TOP
keyword.

T Queryd

SELECT TOP 5 Species UUT.
FROM Sheetl;

The DISTINET keyword

* If your data includes duplicate values and you only want to return all
of the unique values from a column, you can use the DISTINCT keyword.

ﬂ Query5

SELECT DISTIMCT 5pecies
FROM Sheetl;

Counting

* You can count the number of rows in your table by using the COUNT
keyword; i.e. count the number of species.

In: ? Query6 Nut: = Querys

Exprl000 -
SELECT COUMNT(] b3

FROM 5heetl;

« While COUNT(*) tells you the number of rows in a table, if you want to
know the number of non-missing values in a specific column, you can

use GOUNT.

* This is useful if you have missing values in one or more of your
columns.

||'|Z ? QueryT DLItZ *=H Query7
Exprl0o00 -

5=
I

EELECT COUNT[species)
FROM Sheetl:

e It’s also common to combine COUNT with DISTINCT to count the number
of distinct values in a column.

In: 5 Query6 Qut: [querys
SELECT COUMNT[*} A5 N ‘ N -

FROM
(SELECT DISTIMCT Species FROM Sheetl) A5 T; -

Filtering results

* The WHERE keyword allows you to filter
your results based on their values.

=4 Sheetl | = Queryd DLIt =H Sheetl | = Query9 .

In:

Operators:

SELECT Species
FROM Sheetl
|WHERE Family = ‘Large Theropod’

Species -

Tyrannosaurus
Majungasauru!
Giganotosauru
Tarbosaurus

Allosaurus
Megalosaurus
Rugops
Afrovenator
Carnotaurus
Albertosaurus
Gorgosaurus

= Equal to
<> Not equal

< Less than
> Greater than
<= Less than or equal to

>= Greater than or equal to

Filtering by numerical values

 Using the LOUNT keyword, it is also possible to count the number of
records that fulfil a specific criteria.

SELECT Count(*) AS Exprl Nut: Exprl =
FROM Sheetl ' o)
WHERE Average weight_kg > 4000:

In:

Filtering by text

* The WHERE keyword also enables you to filter by text values.

|n_ j Sheetl ﬁ Querys DUt j Sheetl ﬁj Query9
" | [SELECT species ' ' '

Species -
FROM Sheetl -
WHERE Family = "Sauropod” plodoc

Camarasaurus
Europasaurus
Rebbachisauru
Brachiosaurus
Vulcanodon
Alamosaurus

Selecting data based on multiple conditions

* You may need to select data based on multiple conditions.
* You can do this by combining your WHERE queries with the AND

keyword.

SELECT *
FROM Sheetl

WHERE Family="Large Theropod’

and Diet="Carnivora’:

Out:

TRl -

~| Species -

a Tyrannosaurus Large Theropo
& Majungasauru:

Family -~

Large Theropo

8 Giganotosauru Large Theropo

19 Tarbosaurus
21 Allosaurus

22 Megalosaurus
27 Rugops

28 Afrovenator
30 Carnotaurus
31 Albertosaurus
33 Gorgosaurus

<A

Large Theropo
Large Theropo
Large Theropo
Large Theropo
Large Theropo
Large Theropo
Large Theropo
Large Theropo

Existence_period - |Existed fron - Existed unti - Diet

Late Cretaceous
Late Cretaceous
Early Cretaceous
Late Cretaceous
Late Jurassic

Mid Jurassic

Late Cretaceous
Early Cretaceous
Late Cretaceous
Late Cretaceous
Late Cretaceous

68
84
112
74
156
170
96
133
72
76
&0

66 Carnivore
71 Carnivore
90 Carnivore
J0 Carnivore
144 Carnivore
155 Carnivore
94 Carnivore
121 Carnivore
J0 Carnivore
74 Carnivore
73 Carnivore

» |Average |

The IR keyword

* If you wanted to select rows based on multiple conditions where
some but not all of the conditions need to be bet, you can use the OR
keyword.

In: gg‘gﬁr;h " Nut: ID - Species - Family - Existence_period - Existed fron -
: ae :

WHERE Area_1 = "South Africa’ a Coelophysis Small Theropo Late Triassic 225

OR Area_1 = "Madagascar’ & Majungasauru: Large Theropo Late Cretaceous 84

* When using AND and OR, ensure that you enclose the individual clauses
in parentheses.

SELECT 1D ~| Species - Family -~ | Existence_period - Existed fron - Existed unti - Diet ~ |Average_we ~ Averagelen~| Area l -~

|n FROM Sheetl I:ll_lt ! Triceratops Ceratopsian Late Cretaceous 68 66 Herbivore 5500 9 UsA
WHERE [Area_1 = 'USA’ OR Area_l = 'Canada’) 2 Stegosaurus Ankylosaurid Late Jurassic 155 145 Herbivore 2000 9 USA

AMD [Existence_period = ‘Late Jurassic’ or Existence_period = 'Late Cretaceous’); 3 Tyrannosaurus Large Theropo Late Cretaceous 68 66 Carnivore 7000 12 Canada
4 Diplodocus Sauropod Late Jurassic 155 145 Herbivore 20000 26 USA
7 Camarasaurus Sauropod Late Jurassic 150 140 Herbivore 20000 23 UsA
12 Styracosaurus Ceratopsian | Late Cretaceous 76 70 Herbivore 2700 5.5/ USA

16 Parasauroloph Euornithopod | Late Cretaceous 76 74 Herbivore 3500 11 Canada
24 Einiosaurus Ceratopsian Late Cretaceous 76 74 Herbivore 1300 6 USA

31 Albertosaurus Large Theropo Late Cretaceous 76 74 Carnivore 2500 9 Canada
32 Alamosaurus Sauropod Late Cretaceous 70 65 Herbivore 30000 21 USA

33 Gorgosaurus Large Theropo Late Cretaceous 80 73 Carnivore 2500 8.6 Canada

The BETWEEN keyword

* If you wanted to get the records where the average weight is between
two values, you don’t have to use < and >.

* Instead, you can use BETWEEN.

|) [l) ID ~ Species - Family ~ | Existence_period - Existed fron - Existed unti - Diet ~ Average we - Average len~| Area_ 1l -
n: SELECT * Ut' ! Triceratops Ceratopsian Late Cretaceous 68 66 Herbivore 5500 9 USA
FROM Sheetl 3 Tyrannosaurus Large Theropo Late Cretaceous 68 b6 Carnivore 7000 12 Canada
WHERE Average_weight_kg 8 Giganotosauru Large Theropo Early Cretaceous 112 90 Carnivore 8000 12.5 Argentina
|B ETWEEN 4000 AND 2000; 13 Iguanodon Euornithopod Early Cretaceous 140 110 Herbivore 4000 10 England
19 Tarbosaurus Large Theropo Late Cretaceous 74 70 Carnivore 4000 10 China
20 Rebbachisauru Sauropod Early Cretaceous 112 99 Herbivore 7000 20 Morocco

* You can use the BETWEEN keyword with multiple clauses in the same
way you use the WHERE keyword.

|n' SELECT *
FROM Sheetl
WHERE Average_weight_kg BETWEEN 4000 AND 3000
IAND Area_l = 'England”:

I]Ut' 1D * Species - Family - | Existence_period - Existed fron ~ Existed unti - Diet ~ Average we » Average len~ Area 1l - Area2 - Area3d -
) E Iguanodon Euornithopod Early Cretaceous 140 110 Herbivore 4000 10 England Germany Spain

The IN keyword

* If you want to select rows based upon three or more different values

from a single column, the WHERE keyword can start to become
unwieldly.

* This is where the IN keyword comes in useful.

| Mn: SELECT *
FROM Sheetl
WHERE Average weight_kg IM (200, 500, 7000, 40000}

ID ~ Species - Family - | Existence_period - |Existed fron - Existed unti - Diet ~ Average we - Average len~| Area_l - Area 2
§ Tyrannosaurus Large Theropo Late Cretaceous 68 66 Carnivore 7000 12 Canada USA
I]Ut: 10 Fukuiraptor Small Theropo Early Cretaceous 121 99 Carnivore 200 4.2 Japan
11 Gallimimus Ornithomimos Late Cretaceous 74 70 Omnivore 200 6 Mongolia
17 Europasaurus Sauropod Late Jurassic 154 151 Herbivore 500 6.2 Germany
20 Rebbachisauru Sauropod Early Cretaceous 112 99 Herbivore 7000 20 Morocco

23 Brachiosaurus Sauropod Late Jurassic 155 140 Herbivore 40000 30 Algeria Tanzania

-

Area 3

USA

-

NULL and | NULL

 NULL represents a missing or unknown value.
* You can check values using the expression |8 NULL.

* The IS NULL is useful when combined with the WHERE keyword to figure
out what data you’re missing.

* If you want to filter out missing values so that you only get results
which are not NULL. To do this, you can use the |5 NOT NULL keyword.

||_|, SELECT *
: FROM Sheetl
WHERE Existed_from_million_years_ago I5 NMULL:

- | Existed unti - Diet

I]Ut' 1D | Species - Family - Existence_period - Existed from_million_years ago
66 Herbivore

ﬂ Triceratops Ceratopsian Late Cretaceous

The LIKE and NOT LIKE keywords

* When filtering by text, the WHERE command only allows you to filter by
text that matches your search criteria exactly.

* However, in the real world, you often want to search for a pattern
rather than a specific match.

* This is where the LIKE keyword comes in.
* LIKE allows you to search for a pattern in a column.

* The LIKE command requires you to use a wildcard placeholder for
some other values. There are two of these you can use with the LIKE
command.

* The % wildcard will match zero, one, or many characters in text; i.e.
the following would return ‘Data’, ‘Datal’, ‘DataCamp’, ‘DataMind’, and so on.

SELECT name
FROM companies
WHERE name LIKE Data%

* The wildcard will match a single character; i.e. the following query
matches companies like ‘DataCamp’, ‘Datalomp’, and so on.

SELECT name
FROM companies
WHERE name LIKE DataC_mp’ ;

* You can also use the NOT LIKE operator to find records that don’t match
the pattern you specify.

Aggregate function

* You can perform some calculation on the data contained within a
database.

* You can use SQL’s in-built aggregate functions in order to do this.

* A few examples are:

Calculate the average value: Calculate the maximum value:
Out:

In: ‘SELECFA‘JG[Average_weight_kg] Out: ‘ Exprl0o0 - N [Feea MAX(Average_weight_kg] Exprlooo -

FROM Sheetl 400.15151 FROM Sheetl

Calculate the summed value:
Jut: ‘ Exprl000 -

|ﬂ: SELECT SUMAverage_weight_kg)
FROM Sheetl;

Using aggregate functions with the WHERE
command

« Aggregate functions can be combined with the WHERE clause in order
to gain further insights from your data.

||‘|: SELECT sUM[Average_weight_kg] DUt: .
FROM Sheetl Exprl000

IWHEF‘£ Average_weight_kg > 4000;

A note on arithmetic

* In addition to aggregate functions, you can also perform basic
arithmetic using the standard symbols; +, -, *, /.

In: ‘SELECF [473); Out: ‘ Exprl000 -
|

* Be careful when dividing. While the SQL editor in Access handles
division correctly; i.e:

In: lut:

SELECT [4/3); Exprl000 -

 However, some other editors assume that, if you feed in an integer, you want an
integer as output. So you’d get 1 as a result to the above.

* |f you want to get the proper result when using one of these editors, you can use:

SELECT (4.8 / 3.8) AS result;

Aliases

* When using aggregate functions, such as ANG() and MAX(), sQL
automatically creates an alias name; i.e:

In: SELECT &VG[Average_weight_kg), Out: Expri0oo i Exprl0o0l

AVG[Existed_from_million_years_ago) ARy 114.212121212121
FROM Sheetl:

* You can use the AS keyword to create an alias that specifies the name
given to the result column.

In: [SELECT AVGiAverage weight_ka) AS Mean_weight, (ut Mean_weight - L BRI BRI
AVG[Existed_from_million_years_ago) A5 Mean_existed_from 152 114.212121212121

FROM Sheetl;

Sorting results

* The ORDER BY keywords sorts the values of a column in either
ascending or descending order.

||'|: SELECT Species DLIt Species -
FROM Sheetl :
ORDER BY Average_weight_kag:

Velociraptor
Coelophysis
Khaan
Prenccephale

* By default, it will sort in ascending order. You use the DESC
keyword to sort in descending order.

In: [SELECT species

D t Species -

FROM Sheetl ut. rachiosaurus

ORDER BY Average_weight_kg DESC -
Alamosaurus
Diplodocus
Camarasaurus

Giganotosauru

Tyrannosaurus

Sorting multiple columns

* The ORDER BY keyword can also be used to sort multiple columns.

* When doing this, SQL will first sort by the first specified column, then
the second, and so on.

In: |SELECT Family, Species Out: b T DIEREE S
FROM Sheetl SUENRLEIGTS Microraptor
ORDER BY Average_weight_kg, Existed_from_million_years_ago: Small Theropo Velociraptor
Small Theropo Coelophysis
Small Theropo Khaan
Euornithopod Prenocephale

Ornithomimos Gallimimus

Small Theropo Fukuiraptor
Sauropod Europasaurus

Sorting by multiple columns

* The ORDER BY command can also be sued to sort multiple columns.

* SQL will sort by the first specific column, and then by the second
specified column, and so on.

. SELECT Species, Family .
In: FROM Sheet1 Out:
ORDER BY Average_weight_kg, Existed_until_millions_years_ago;

Species - Family -~
Small Theropo
Velociraptor Small Theropo
Coelophysis Small Theropo
Khaan Small Theropo
Prenocephale Euornithopod
Fukuiraptor Small Theropo
Gallimimus Ornithomimos

The GROUP BY keyword

* You may often want to aggregate your sorted results; i.e. if you have a
data base of UK house holds, you may want to count the number of
males and number of females.

* You can use the GROUP BY keyword to do this.

In : Out: Family - | Exprlo0l -
N: ASELECT Family, count(*] :

FROM Sheetl Ankylosaurid

GROUP BY Family; Ceratopsian

Euornithopod

Large Theropo 11
Ornithomimos

Sauropod

Small Theropo

Filtering results of aggregate functions

* In SQL, aggregate functions cannot be used in WHERE clauses.

* Therefore, this means that, if you want to filter based on the result of
an aggregate function, you have to use the HAVING clause.

In: |SELECT Diet, COUNT(Y) lut:
FROM Sheetl
GROUP BY Diet = -
HAVING COUNT [Average_length_m) = 12: Herbivore 15

~ | Exprlo0l

Any questions?

