
Introduction to SQL for Data 
Science

Lewys Brace
l.brace@Exeter.ac.uk

Q-Step Workshop – 20/03/2019



Introduction

• The role of a data scientist is to turn raw data into actionable 
insights.

• Much of the world's raw data, such as electronic medical records and 
customer transaction histories, lives in organized collections of tables 
called relational databases.

• Therefore, to be an effective data scientist, you must know how to 
wrangle and extract data from these databases using a domain-
specific language called SQL (Structured Query Language).



Relational databases
• You can think of a relational database as a collection of tables.

• A table is just a set of rows and columns, like a spreadsheet, which represents exactly 
one type of entity; i.e. a table might represent employees in a company or purchases 
made, but not both.

• Each row, or record, of a table contains information about a single entity; i.e. in a table 
representing employees, each row represents a single person.

• Each column, or field, of a table contains a single attribute for all rows in the table; i.e. 
in a table representing employees, we might have a column containing first and last 
names for all employees.



The practice database

• For this course, we are going to be writing and implementing our SQL 
code within Microsoft Access.

• We’ll be using a database that details various aspects of different 
dinosaur species.

• This database can be downloaded from 
https://github.com/LewBrace/Q-Step_SQL_workshop.

• Download and open this database

https://github.com/LewBrace/Q-Step_SQL_workshop


Selecting a single column

• While SQL can be used to create and modify databases, the focus of 
this course will be querying databases.

• A query is a request for data from a database table, or combination of 
tables.

• Querying is an essential skill for a data scientist, since the data you 
need for your analyses will often live in databases.



Opening the SQL editor
1

2

3

4

5

6

The SQL View Object tab has 
made the (very rational) 
assumption that you want to 
retrieve some information 
from the Sheet1 table, so it has 
written the first part for you. 
It doesn’t know exactly what 
you want to retrieve, so it 
displays only the part it feels 
confident about.



Selecting a single column

• In SQL, you can select data from a table using a SELECT statement; i.e. the following 
query selects the Species column from the Sheet1 table.

• The semi-colon tells SQL where the end of your query is.

• In SQL, SELECT and FROM are keywords.

• Keywords in SQL are not case-sensitive, which means that the following would 
also work.

• However, convention dictates that writing keywords in uppercase is `best 
practice’.



• Once you’re done coding your query, save it.

1
2

• Your query can then be executed by clicking on the corresponding 
query tab in the left-hand panel.

3



Selecting multiple columns

• Selecting multiple columns is easy enough.

• Just add the extra column names to the code, separated by commas.

In: Out:

• You can select all columns in a table by using *.

In: Out:



Retrieving a range of records

• You can run a query for the top x rows of data by using the SELECT TOP
keyword.

In: Out:



The DISTINCT keyword

• If your data includes duplicate values and you only want to return all 
of the unique values from a column, you can use the DISTINCT keyword.



Counting

• You can count the number of rows in your table by using the COUNT 
keyword; i.e. count the number of species.

In: Out:



• While COUNT(*) tells you the number of rows in a table, if you want to 
know the number of non-missing values in a specific column, you can 
use COUNT.

• This is useful if you have missing values in one or more of your 
columns.

In: Out:

• It’s also common to combine COUNT with DISTINCT to count the number 
of distinct values in a column. 

In: Out:



Filtering results

• The WHERE keyword allows you to filter 
your results based on their values.

In: Out:
Operators:
= Equal to
<> Not equal
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to



• Using the COUNT keyword, it is also possible to count the number of 
records that fulfil a specific criteria.

In: Out:

Filtering by numerical values



Filtering by text

• The WHERE keyword also enables you to filter by text values.

In: Out:



Selecting data based on multiple conditions

• You may need to select data based on multiple conditions.

• You can do this by combining your WHERE queries with the AND
keyword.

In: Out:



The OR keyword

• If you wanted to select rows based on multiple conditions where 
some but not all of the conditions need to be bet, you can use the OR
keyword.

In: Out:

• When using AND and OR, ensure that you enclose the individual clauses 
in parentheses.

In: Out:



The BETWEEN keyword

• If you wanted to get the records where the average weight is between 
two values, you don’t have to use < and >.

• Instead, you can use BETWEEN.

In: Out:



• You can use the BETWEEN keyword with multiple clauses in the same 
way you use the WHERE keyword.

In:

Out:



The IN keyword

• If you want to select rows based upon three or more different values 
from a single column, the WHERE keyword can start to become 
unwieldly.

• This is where the IN keyword comes in useful.

In:

Out:



NULL and IS NULL

• NULL represents a missing or unknown value.

• You can check values using the expression IS NULL.

• The IS NULL is useful when combined with the WHERE keyword to figure 
out what data you’re missing.

• If you want to filter out missing values so that you only get results 
which are not NULL. To do this, you can use the IS NOT NULL keyword.

In:

Out:



The LIKE and NOT LIKE keywords

• When filtering by text, the WHERE command only allows you to filter by 
text that matches your search criteria exactly.

• However, in the real world, you often want to search for a pattern 
rather than a specific match.

• This is where the LIKE keyword comes in.

• LIKE allows you to search for a pattern in a column.

• The LIKE command requires you to use a wildcard placeholder for 
some other values. There are two of these you can use with the LIKE
command.



• The % wildcard will match zero, one, or many characters in text; i.e. 
the following would return ‘Data’, ‘DataC’, ‘DataCamp’, ‘DataMind’, and so on.

• The _ wildcard will match a single character; i.e. the following query 
matches companies like ‘DataCamp’, ‘DataComp’, and so on.

• You can also use the NOT LIKE operator to find records that don’t match 
the pattern you specify.



Aggregate function

• You can perform some calculation on the data contained within a 
database.

• You can use SQL’s in-built aggregate functions in order to do this.

• A few examples are:

In: Out:

In: Out:

In: Out:
Calculate the average value:

Calculate the summed value:

Calculate the maximum value:



Using aggregate functions with the WHERE
command

• Aggregate functions can be combined with the WHERE clause in order 
to gain further insights from your data.

In: Out:



A note on arithmetic
• In addition to aggregate functions, you can also perform basic 

arithmetic using the standard symbols; +, -, *, /.
In: Out:

• Be careful when dividing. While the SQL editor in Access handles 
division correctly; i.e:

In: Out:

• However, some other editors assume that, if you feed in an integer, you want an 
integer as output. So you’d get 1 as a result to the above.

• If you want to get the proper result when using one of these editors, you can use:



Aliases
• When using aggregate functions, such as ANG() and MAX(), SQL 

automatically creates an alias name; i.e:

In: Out:

• You can use the AS keyword to create an alias that specifies the name 
given to the result column.

In: Out:



Sorting results

• The ORDER BY keywords sorts the values of a column in either 
ascending or descending order.

• By default, it will sort in ascending order. You use the DESC

keyword to sort in descending order.

In: Out:

In: Out:



Sorting multiple columns

• The ORDER BY keyword can also be used to sort multiple columns.

• When doing this, SQL will first sort by the first specified column, then 
the second, and so on.

In: Out:



Sorting by multiple columns

• The ORDER BY command can also be sued to sort multiple columns.

• SQL will sort by the first specific column, and then by the second 
specified column, and so on.

In: Out:



The GROUP BY keyword

• You may often want to aggregate your sorted results; i.e. if you have a 
data base of UK house holds, you may want to count the number of 
males and number of females.

• You can use the GROUP BY keyword to do this.

In: Out:



Filtering results of aggregate functions

• In SQL, aggregate functions cannot be used in WHERE clauses.

• Therefore, this means that, if you want to filter based on the result of 
an aggregate function, you have to use the HAVING clause.

In: Out:



Any questions?


