
Data Analysis and 
Visualisation with Python

Lewys Brace
l.brace@Exeter.ac.uk

Q-Step Workshop – 06/11/2019



Numerical Python (NumPy)

• NumPy is the most foundational package for numerical computing in 
Python.

• If you are going to work on data analysis or machine learning projects, then 
having a solid understanding of NumPy is nearly mandatory.

• Indeed, many other libraries, such as pandas and scikit-learn, use NumPy’s
array objects as the lingua franca for data exchange.

• One of the reasons as to why NumPy is so important for numerical 
computations is because it is designed for efficiency with large arrays of 
data. The reasons for this include:

- It stores data internally in a continuous block of memory, 
independent of other in-built Python objects.
- It performs complex computations on entire arrays without the 
need for for loops.



What you’ll find in NumPy

• ndarray: an efficient multidimensional array providing fast array-orientated 
arithmetic operations and flexible broadcasting capabilities.

• Mathematical functions for fast operations on entire arrays of data without 
having to write loops.

• Tools for reading/writing array data to disk and working with memory-
mapped files.

• Linear algebra, random number generation, and Fourier transform 
capabilities.

• A C API for connecting NumPy with libraries written in C, C++, and 
FORTRAN. This is why Python is the language of choice for wrapping legacy 
codebases.



The NumPy ndarray: A multi-dimensional 
array object

• The NumPy ndarray object is a fast and flexible container for large 
data sets in Python.

• NumPy arrays are a bit like Python lists, but are still a very different 
beast at the same time.

• Arrays enable you to store multiple items of the same data type. It is 
the facilities around the array object that makes NumPy so 
convenient for performing math and data manipulations.



Ndarray vs. lists

• By now, you are familiar with Python lists and how incredibly useful 
they are.

• So, you may be asking yourself:

“I can store numbers and other objects in a Python list and do all sorts 
of computations and manipulations through list comprehensions, for-
loops etc. What do I need a NumPy array for?”

• There are very significant advantages of using NumPy arrays overs 
lists.



Creating a NumPy array

• To understand these advantages, lets create an array.

• One of the most common, of the many, ways to create a NumPy array 
is to create one from a list by passing it to the np.array() function.

In: Out:



Differences between lists and ndarrays

• The key difference between an array and a list is that arrays are 
designed to handle vectorised operations while a python lists are not.

• That means, if you apply a function, it is performed on every item in 
the array, rather than on the whole array object.



• Let’s suppose you want to add the number 2 to every item in the list. 
The intuitive way to do this is something like this:

• That was not possible with a list, but you can do that on an array:

In: Out:

In: Out:



• It should be noted here that, once a Numpy array is created, you 
cannot increase its size. 

• To do so, you will have to create a new array. 



Create a 2d array from a list of list

• You can pass a list of lists to create a matrix-like a 2d array.

In:
Out:



The dtype argument

• You can specify the data-type by setting the dtype() argument.

• Some of the most commonly used NumPy dtypes are: float, int, bool, str,
and object.

In:
Out:



The astype argument

• You can also convert it to a different data-type using the astype method.

In: Out:

• Remember that, unlike lists, all items in an array have to be of the same 
type.



dtype=‘object’

• However, if you are uncertain about what data type your array will 
hold, or if you want to hold characters and numbers in the same 
array, you can set the dtype as 'object'.

In: Out:



The tolist() function

• You can always convert an array into a list using the tolist() command.

In: Out:



Inspecting a NumPy array

• There are a range of functions built into NumPy that allow you to 
inspect different aspects of an array:

In:
Out:



Extracting specific items from an array

• You can extract portions of the array using indices, much like when 
you’re working with lists.

• Unlike lists, however, arrays can optionally accept as many 
parameters in the square brackets as there are number of dimensions

In: Out:



Boolean indexing

• A boolean index array is of the same shape as the array-to-be-filtered, 
but it only contains TRUE and FALSE values.

In: Out:



Pandas

• Pandas, like NumPy, is one of the most popular Python libraries for 
data analysis.

• It is a high-level abstraction over low-level NumPy, which is written in 
pure C.

• Pandas provides high-performance, easy-to-use data structures and 
data analysis tools.

• There are two main structures used by pandas; data frames and 
series.



Indices in a pandas series

• A pandas series is similar to a list, but differs in the fact that a series 
associates a label with each element. This makes it look like a dictionary.

• If an index is not explicitly provided by the user, pandas creates a RangeIndex
ranging from 0 to N-1.

• Each series object also has a data type.

In: Out

:



• As you may suspect by this point, a series has ways to extract all of 
the values in the series, as well as individual elements by index.

In: Out

:

• You can also provide an index manually.

In:

Out:



• It is easy to retrieve several elements of a series by their indices or 
make group assignments.

In:

Out:



Filtering and maths operations

• Filtering and maths operations are easy with Pandas as well.

In: Out

:



Pandas data frame

• Simplistically, a data frame is a table, with rows and columns.

• Each column in a data frame is a series object.

• Rows consist of elements inside series.

Case ID Variable one Variable two Variable 3

1 123 ABC 10

2 456 DEF 20

3 789 XYZ 30



Creating a Pandas data frame

• Pandas data frames can be constructed using Python dictionaries.

In:

Out:



• You can also create a data frame from a list.

In: Out:



• You can ascertain the type of a column with the type() function.

In:

Out:



• A Pandas data frame object as two indices; a column index and row 
index.

• Again, if you do not provide one, Pandas will create a RangeIndex from 0 
to N-1.

In:

Out:



• There are numerous ways to provide row indices explicitly.

• For example, you could provide an index when creating a data frame:

In: Out:

• or do it during runtime.
• Here, I also named the index ‘country code’.

In:
Out:



• Row access using index can be performed in several ways.

• First, you could use .loc() and provide an index label.

• Second, you could use .iloc() and provide an index number

In: Out:

In: Out:



• A selection of particular rows and columns can be selected this way.

In: Out:

• You can feed .loc() two arguments, index list and column list, slicing 
operation is supported as well:

In: Out:



Filtering

• Filtering is performed using so-called Boolean arrays.



Deleting columns

• You can delete a column using the drop() function.

In: Out:

In: Out:



Reading from and writing to a file

• Pandas supports many popular file formats including CSV, XML, HTML, 
Excel, SQL, JSON, etc.

• Out of all of these, CSV is the file format that you will work with the 
most.

• You can read in the data from a CSV file using the read_csv() function.

• Similarly, you can write a data frame to a csv file with the to_csv() 
function.



• Pandas has the capacity to do much more than what we have covered 
here, such as grouping data and even data visualisation.

• However, as with NumPy, we don’t have enough time to cover every 
aspect of pandas here.



Exploratory data analysis (EDA)

Exploring your data is a crucial step in data analysis. It involves:

• Organising the data set

• Plotting aspects of the data set

• Maybe producing some numerical summaries; central tendency and 
spread, etc.

“Exploratory data analysis can never be the whole story, but nothing 
else can serve as the foundation stone.”

- John Tukey.



Download the data

• Download the Pokemon dataset from:

https://github.com/LewBrace/da_and_vis_python

• Unzip the folder, and save the data file in a location you’ll remember.

https://github.com/LewBrace/da_and_vis_python


Reading in the data

• First we import the Python packages we are going to use.

• Then we use Pandas to load in the dataset as a data frame.

NOTE: The argument index_col argument states that we'll treat the first column 

of the dataset as the ID column.

NOTE: The encoding argument allows us to by pass an input error created 
by special characters in the data set.



Examine the data set



• We could spend time staring at these 
numbers, but that is unlikely to offer 
us any form of insight.

• We could begin by conducting all of 
our statistical tests.

• However, a good field commander 
never goes into battle without first 
doing a recognisance of the terrain…

• This is exactly what EDA is for…



Plotting a histogram in Python



Bins
• You may have noticed the two histograms we’ve seen so far look different, 

despite using the exact same data.

• This is because they have different bin values.

• The left graph used the default bins generated by plt.hist(), while the one on the 
right used bins that I specified.



• There are a couple of ways to manipulate bins in matplotlib.

• Here, I specified where the edges of the bars of the histogram are; 
the bin edges.



• You could also specify the number of bins, and Matplotlib will automatically 
generate a number of evenly spaced bins.



Seaborn

• Matplotlib is a powerful, but sometimes unwieldy, Python library.

• Seaborn provides a high-level interface to Matplotlib and makes it easier 
to produce graphs like the one on the right.

• Some IDEs incorporate elements of this “under the hood” nowadays.



Benefits of Seaborn

• Seaborn offers:

- Using default themes that are aesthetically pleasing.

- Setting custom colour palettes.

- Making attractive statistical plots.

- Easily and flexibly displaying distributions.

- Visualising information from matrices and DataFrames.

• The last three points have led to Seaborn becoming the exploratory 
data analysis tool of choice for many Python users.



Plotting with Seaborn

• One of Seaborn's greatest strengths is its diversity of plotting 
functions.

• Most plots can be created with one line of code.

• For example….



Histograms

• Allow you to plot the distributions of numeric variables.



Other types of graphs: Creating a scatter plot

Seaborn “linear 
model plot” 
function for 
creating a scatter 
graph

Name of variable we 
want on the y-axis

Name of variable we 
want on the x-axis

Name of our 
dataframe fed to the 
“data=“ command



• Seaborn doesn't have a dedicated scatter plot function.

• We used Seaborn's function for fitting and plotting a regression line; 
hence lmplot() 

• However, Seaborn makes it easy to alter plots.

• To remove the regression line, we use the fit_reg=False command



The hue function

• Another useful function in Seaborn is the hue function, which enables 
us to use a variable to colour code our data points.



Factor plots

• Make it easy to separate plots by categorical classes.

Colour by stage.

Separate by stage.
Generate using a swarmplot.

Rotate axis on x-ticks by 45 degrees.





A box plot



• The total, stage, and legendary entries are not combat stats so we should remove 
them.

• Pandas makes this easy to do, we just create a new dataframe

• We just use Pandas’ .drop() function to create a dataframe that doesn’t include 
the variables we don’t want.



Seaborn’s theme
• Seaborn has a number of themes you can use to alter the appearance 

of plots.

• For example, we can use “whitegrid” to add grid lines to our boxplot.



Violin plots

• Violin plots are useful alternatives to box plots.

• They show the distribution of a variable through the thickness of the violin.

• Here, we visualise the distribution of attack by Pokémon's primary type:



• Dragon types tend to have higher Attack stats than Ghost types, but they also have greater 
variance. But there is something not right here….

• The colours!



Seaborn’s colour palettes

• Seaborn allows us to easily set custom colour palettes by providing it 
with an ordered list of colour hex values.

• We first create our colours list.



• Then we just use the palette= function and feed in our colours list.



• Because of the limited number of observations, we could also use a 
swarm plot.

• Here, each data point is an observation, but data points are grouped 
together by the variable listed on the x-axis.



Overlapping plots

• Both of these show similar information, so it might be useful to 
overlap them.

Set size of print canvas.

Remove bars from inside the violins

Make bars black and slightly transparent

Give the graph a title





Data wrangling with Pandas

• What if we wanted to create such a plot that included all of the other 
stats as well?

• In our current dataframe, all of the variables are in different columns:



• If we want to visualise all stats, then we’ll have to “melt” the 
dataframe.

We use the .drop() function again to re-
create the dataframe without these three 
variables.

The dataframe we want to melt.

The variables to keep, all others will be 
melted.

A name for the new, melted, variable.

• All 6 of the stat columns have been "melted" into one, and 
the new Stat column indicates the original stat (HP, Attack, 
Defense, Sp. Attack, Sp. Defense, or Speed). 

• It's hard to see here, but each pokemon now has 6 rows of 
data; hende the melted_df has 6 times more rows of data.





• This graph could be made to look nicer with a few tweaks.

Enlarge the plot.

Separate points by hue.

Use our special Pokemon colour palette.

Adjust the y-axis.

Move the legend box outside of 
the graph and place to the right of 
it..





Plotting all data: Empirical cumulative 
distribution functions (ECDFs)

• An alternative way of visualising a 
distribution of a variable in a large dataset 
is to use an ECDF.

• Here we have an ECDF that shows the 
percentages of different attack strengths 
of pokemon.

• An x-value of an ECDF is the quantity you 
are measuring; i.e. attacks strength.

• The y-value is the fraction of data points 
that have a value smaller than the 
corresponding x-value. For example…



20% of Pokemon have an attack 
level of 50 or less.

75% of Pokemon have an attack 
level of 90 or less



Plotting an ECDF



• You can also plot multiple ECDFs 
on the same plot.

• As an example, here with have an 
ECDF for Pokemon attack, speed, 
and defence levels.

• We can see here that defence 
levels tend to be a little less than 
the other two.



The usefulness of ECDFs

• It is often quite useful to plot the ECDF first as part of your workflow.

• It shows all the data and gives a complete picture as to how the data 
are distributed.



Heatmaps

• Useful for visualising matrix-like data.

• Here, we’ll plot the correlation of the stats_df variables



Bar plot
• Visualises the distributions of categorical variables.

Rotates the x-ticks 45 degrees



Joint Distribution Plot

• Joint distribution plots combine information from scatter plots and 
histograms to give you detailed information for bi-variate distributions.



Any questions?


