
Intro to Python for Social Scientists

November 20, 2017

In [1]: %matplotlib inline

1 Intro to Python for Social Scientists

This tutorial provides an introduction to programming in Python, along with a few introductory
examples on how Python is generally used in social science research. We will cover:

• Data types: integers, floats, strings, booleans
• Data structures: lists, sets, dictionaries and tuples
• Loops
• Conditional statements
• Writing functions
• Reading and writing data
• Importing third party modules
• Working with data in different formats
• Basic visualization
• Additional resources

1.1 Variables, data types and operators

You create a new variable by simply declaring it.

In [347]: a="Hello World!" #a string variable. Strings need to be placed in single or double quotation marks.
b=2 #an integer variable
c=2/3 #a float variable
d=(b==24) #a boolean variable

To print to console:

In [326]: print(a)

Hello World!

In [327]: b

Out[327]: 2

1

In [328]: print(c+b)

2.6666666666666665

In [329]: d

Out[329]: False

You should always know what type your variables are, since some operations can only be done
on certain types of variables. To check variable types:

In [330]: print("a is", type(a), ",b is", type(b), ",c is", type(b), ",d is", type(d))

a is <class 'str'> ,b is <class 'int'> ,c is <class 'int'> ,d is <class 'bool'>

1.1.1 Operators

Mathematical, comparison and boolean operations and their order or evaluation:
1. exponent: ** 2. multiplication, division, modulo *, /, % 3. addition, subtraction +, -
4. comparison operators <, <=, >=, >, ==, != 5. comparison operators: is, is not, in, not in 6.
boolean NOT, AND, OR: not, and, or

Use () to change the default order. This is just maths.

In [331]: 2**b+20/b<=15

Out[331]: True

In [332]: 2**(b+20)/b<=15

Out[332]: False

In [333]: d==False

Out[333]: True

In [334]: d is not True

Out[334]: True

In [335]: d is not True and b==3

Out[335]: False

In [336]: d is not True or b==3

Out[336]: True

In [337]: result=(b+c)-(d*2)
result

2

Out[337]: 2.6666666666666665

You can use some of these operators on strings as well.

In [338]: "Hello" in a

Out[338]: True

But try:

In [339]: x="2"
y="3"
result=x+y
print(result)

23

For strings, ’+’ performs concatenation.

In [341]: type(result)

Out[341]: str

Now try this:

In [342]: x="2"
y=3
result=x+y
print(result)

TypeError Traceback (most recent call last)

<ipython-input-342-30f6eda1ce84> in <module>()
1 x="2"
2 y=3

----> 3 result=x+y
4 print(result)

TypeError: must be str, not int

What does the error say?

3

1.1.2 Converting variables from one type to another

Sometimes, your data has variables that you would like to use as numbers coded as string, just as
we have x and y above. Or some of the variables are coded as strings, while others are numbers,
although you believe they should all be numbers. If you try to add them however, you get an error
saying that you can’t add strings and numbers. Assuming all the values of the dataset variables
look like numbers, you can convert them into integers or floats. Or the other way around. Now
try this:

In [343]: x="2"
y="3"
result=int(x)+float(y)
print(result)

5.0

In [344]: type(result)

Out[344]: float

And back to string:

In [345]: type(str(result))

Out[345]: str

1.1.3 Exercise:

1. Create a new variable called ’birth_year’ that contains your year of birth.
2. Using your birth year, calculate your age and assign it to a new variable called ’age’.

3. Print a sentence of the form "I am age years old." to the console.
4. Create a new string variable called ’sentence’ that contains this statement.

Write your code in the box below. Let’s see who finishes first!

1.2 Data Structures

Note that the variable we’ve been working with so far contain a single value. However, what we
normally refer to as "variables" in data analysis are variables from datasets, which contain more
than one value. In python, these types of data structures can be lists, sets, dictionaries and tuples.

1.2.1 Lists

Lists are stored between square brackets, and the elements are separated by commas. Here is a list
of ages:

In [349]: ages=[21, 20, 19, 21, 20, 33, 22, 23, 26, 21, 22, 30, 19, 28]
ages

4

Out[349]: [21, 20, 19, 21, 20, 33, 22, 23, 26, 21, 22, 30, 19, 28]

In [348]: len(ages) # this is the number of elements in the list

Out[348]: 9

Lists can be indexed and sliced:

In [350]: # Indexing - getting an element by position. Note that we start from 0 and we stop at len(list)-1.
first_element=ages[0] # this is the element at index 0
last_element=ages[13] # this is the element at index 13
print(first_element, "to", last_element)

21 to 28

In [351]: # Slicing - getting a subset of the elements in the list.
first_3=ages[0:3] # the same thing as ages[:3]
last_3=ages[-3:] # the same thing as ages[10:14]
print(first_3, "and", last_3)

[21, 20, 19] and [30, 19, 28]

In [352]: ages[10:14]

Out[352]: [22, 30, 19, 28]

1.2.2 Other common list operations

In [354]: # Check if values in list:
40 not in ages # true if value is not in the list

Out[354]: True

In [355]: # sorting the list by values:
ages.sort()
ages

Out[355]: [19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 26, 28, 30, 33]

In [361]: # adding to the list
ages.append(2)
ages

Out[361]: [19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 26, 28, 30, 33, 2]

In [359]: # concatenating two lists:
l1=["a", "b", "c"]
l2=[1, 2, 3]
l3=l1+l2
l3

5

Out[359]: ['a', 'b', 'c', 1, 2, 3]

In [362]: # removing an element from the list by value
ages.remove(2)
ages

Out[362]: [19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 26, 28, 30, 33]

In [363]: # finding the index (position) of the first place where the value occurs in the list
ages.index(21)

Out[363]: 4

In [364]: # remove an element from the list by index
del ages[0:5]
ages

Out[364]: [21, 21, 22, 22, 23, 26, 28, 30, 33]

1.2.3 Sets

A set contains an unordered collection of unique and immutable objects. If you want to get all
unique values in a list, a quick way it to transform the list into a set:

In [365]: set_ages=set(ages)
set_ages

Out[365]: {21, 22, 23, 26, 28, 30, 33}

In [366]: unique_ages=list(set_ages)
unique_ages

Out[366]: [33, 21, 22, 23, 26, 28, 30]

1.2.4 Dictionaries

In a dictionary, an entry consists of a word and the word’s definition. The word is the key to
finding out what a word means, and what the word means is considered the value for that key. In
Python, dictionaries have keys and values. Keys are used to find values. Here is a dictionary of
people and their ages:

In [367]: mydict = {"John": 21,
"Jake": 20,
"Jack": 23,

}
mydict

Out[367]: {'Jack': 23, 'Jake': 20, 'John': 21}

In [368]: mydict.keys()

6

Out[368]: dict_keys(['John', 'Jake', 'Jack'])

In [369]: mydict.values()

Out[369]: dict_values([21, 20, 23])

In [370]: mydict["John"]

Out[370]: 21

Dictionaries will be very useful when we start working with web data, such as social media
data.

1.3 Indentation

Python requires blocks to be structured through indentation. Not just as a matter of style, but as
a rule. Statements with the same distance to the left belong to the same block of code. To nest
blocks, you need to indent them further to the right. The number of white spaces doesn’t matter,
what matters is that you are consistently using the same number for blocks that are at the same
level. Usually, we start at the very left edge, and each level in goes a further 1 tab (or 4 white
spaces) to the right. If the code does not follow this rule about the relative indentation of blocks,
then you will get an IndentationError.

However, the indentation level is ignored when you use explicit (or implicit) continuation
lines. You can split a list or dictionary across multiple lines, and the indentation doesn’t matter.

You will see a few examples in the sections below.

1.4 Loops

Most of our work involves some type of iteration over observations in a dataset. Iteration is very
easy and intuitive in Python, and there are many ways to loop through data in order to access and
manipulate it.

In [371]: # for loops
for i in range(5):
print("I can count to "+str(i))

I can count to 0
I can count to 1
I can count to 2
I can count to 3
I can count to 4

In [373]: # while loops
counter = 0
while counter < 5:

print("I can count to", counter)
counter += 1

7

I can count to 0
I can count to 1
I can count to 2
I can count to 3
I can count to 4

In [375]: #List comprehension
k=[key for key in mydict.keys()]
k

Out[375]: ['John', 'Jake', 'Jack']

1.5 Conditional statements

Data management, processing and analysis involve taking a series of decisions. We use condi-
tional statements (most often in the form of if statements) to take these decitions.

In [376]: # if statement
for i in range(5):

if i % 2 == 0:
print("I can count even numbers to "+str(i))

I can count even numbers to 0
I can count even numbers to 2
I can count even numbers to 4

In [377]: # if-else statement
for i in range(5):

if i % 2 == 0:
print("I can count even numbers to "+str(i))

else:
print("I can count odd numbers to "+str(i))

I can count even numbers to 0
I can count odd numbers to 1
I can count even numbers to 2
I can count odd numbers to 3
I can count even numbers to 4

In [378]: # if-elif-else statements
for i in range(5):

if i<=1:
print("I can count to "+str(i))

elif 2<=i<=3:
print("I can also count to "+str(i))

else:
print("But I can't count to "+str(i))

8

I can count to 0
I can count to 1
I can also count to 2
I can also count to 3
But I can't count to 4

1.6 Writing functions

You often have to perform the same type of task many times, on different data. To avoid writing
the same code over and over, you can write functions that can be called every time you want to
perform the specific task.

In [379]: def power_of(a, b):
return a**b

print(power_of(2,3))

8

In [381]: print(power_of(3,5))

243

1.7 Reading and writing files

You can use the read, write, readlines and writelines functions from base R to read and write
files. We have the examples.csv file that you saved from ELE. Let’s say you are interested in what
regions there are in this data. Let’s start by creating a set called regions, which we will populate
with the values available in the data.

In [306]: regions=set() # create an empty set
with open("mydataset.csv", "r") as myfile: # open the file for reading

data = myfile.readlines()
for line in data:

region=line.split(",")[1]
regions.add(region)

print(regions)

{'East', 'North-East', 'West', 'North', 'South', 'region'}

Now we can open a new file, and write the regions to it:

In [382]: with open("regions.txt", "w") as myfile: # open the file for writing
for region in regions:

myfile.write(region + '\n')

9

You can also append to a file in mode "a" and open it both for reading and writing in mode
"r+".

In [383]: with open("regions.txt", "a") as myfile: # open the file for writing
for region in regions:

myfile.write(region + '\n')

1.8 Importing third party modules

Everything that we’ve done so far was based on functions from base Python. However, we will of-
ten need to import other packages which can handle more complex or specific tasks. For example,
we may want to use a module that is able to better read and write csv data, such as the ’csv’ mod-
ule. To do that, we have to first import the module. For packages that are already installed, you
can simply do that by typing ’import’ and the name of the package. Many of the useful packages
are already installed in Anaconda.

But how do you know which packages are installed? If you open Anaconda Prompt, and
you type "conda list", it will list all installed package. You can do this in any terminal/command
prompt.

1.9 Reading data in different formats

The ’csv’ module is already installed in Anaconda, so we can go ahead and import it. Let’s read
the file in csv format, recode missing values as NA, and write it out as a new clean.csv. The ’csv’
module is very useful for manipulating large files that contain long text fields.

In [3]: import csv
with open("clean.csv", "w") as outfile:

writer=csv.writer(outfile)
with open("mydataset.csv", "r") as infile: # open the file for writing

reader=csv.reader(infile)
writer.writerow(next(reader))
for row in reader:

writer.writerow(row[0:6]+[(row[6].replace("missing", "NaN"))])

You can also read csv files, as well as other file formats using Pandas. Pandas is one of the main
libraries for data analysis in Python. For those of you familiar with R, the data frames structure
and Pandas will make it very easy to use. Let’s see what we can do, by importing the clean.csv
file that you just saved.

In [4]: import pandas as pd # we import it as pd because it's easier to type
df=pd.read_csv("clean.csv")
df

Out[4]: id region party chamber spent raised reelected
0 1 East Centre H 285937 411847 0.0
1 2 East Centre H 308530 1301546 1.0
2 3 East Centre H 435962 629768 4.0
3 4 East Centre H 685526 737446 3.0

10

4 5 East Centre H 242312 370557 1.0
5 6 East Centre H 149546 432485 3.0
6 7 East Centre H 618818 850163 2.0
7 8 East Centre H 354655 364555 2.0
8 9 East Centre H 147248 165364 0.0
9 10 East Centre H 306052 360675 3.0
10 11 East Centre H 746673 1025318 0.0
11 12 East Centre H 1265171 4205366 5.0
12 13 East Centre H 54084 100084 0.0
13 14 East Centre H 260806 457341 1.0
14 15 East Centre H 71157 237351 4.0
15 16 East Centre H 261123 373064 3.0
16 17 East Centre H 136185 571276 1.0
17 18 East Centre H 218830 320998 2.0
18 19 East Centre H 251084 700724 2.0
19 20 East Centre H 200186 588016 2.0
20 21 East Centre H 455185 557252 0.0
21 22 East Centre H 322763 712911 3.0
22 23 East Centre H 360835 539662 NaN
23 24 East Centre H 245872 280121 5.0
24 25 East Centre H 316460 370905 0.0
25 26 East Centre H 253641 937422 1.0
26 27 East Centre H 286431 834714 4.0
27 28 East Centre H 237073 296125 3.0
28 29 East Centre H 210111 1159071 1.0
29 30 East Centre S 66606 48704 3.0
..
509 510 West Right H 212548 218840 3.0
510 511 West Right H 96166 251470 2.0
511 512 West Right H 187035 324529 2.0
512 513 West Right H 272139 454256 0.0
513 514 West Right H 433568 843939 3.0
514 515 West Right H 421667 691779 0.0
515 516 West Right H 297943 250585 5.0
516 517 West Right H 208831 380948 0.0
517 518 West Right H 226642 420613 1.0
518 519 West Right H 299537 664525 4.0
519 520 West Right H 361325 250110 3.0
520 521 West Right H 170404 244851 1.0
521 522 West Right H 230738 455582 3.0
522 523 West Right H 242817 263879 2.0
523 524 West Right H 199311 255132 2.0
524 525 West Right H 372081 449664 0.0
525 526 West Right H 526982 990676 3.0
526 527 West Right H 266526 720413 0.0
527 528 West Right H 72911 148110 5.0
528 529 West Right H 291832 613410 0.0
529 530 West Right H 1417682 2122890 1.0

11

530 531 West Right H 154252 561509 4.0
531 532 West Right H 495108 1261714 3.0
532 533 West Right H 396456 967929 1.0
533 534 West Right H 139957 257002 3.0
534 535 West Right H 187541 469759 2.0
535 536 West Right S 112443 78720 2.0
536 537 West Right S 157211 1073163 0.0
537 538 West Right S 1692394 4631824 3.0
538 539 West Right S 424965 474590 0.0

[539 rows x 7 columns]

In [388]: df.head(5) # first 5 entries

Out[388]: id region party chamber spent raised reelected
0 1 East Centre H 285937 411847 0.0
1 2 East Centre H 308530 1301546 1.0
2 3 East Centre H 435962 629768 4.0
3 4 East Centre H 685526 737446 3.0
4 5 East Centre H 242312 370557 1.0

In [389]: df.columns # the column names

Out[389]: Index(['id', 'region', 'party', 'chamber', 'spent', 'raised', 'reelected'], dtype='object')

In [390]: df["reelected"][0:5] # select a column, and a slice within it

Out[390]: 0 0.0
1 1.0
2 4.0
3 3.0
4 1.0
Name: reelected, dtype: float64

In [391]: # Subsetting data: create another data frame that only includes obswervations from the South and East.
value_list=["South", "East"]
df_SE=df[df.region.isin(value_list)] # Replace this with df[~df.region...] to keep only those that don't meet the condition
df_SE.count()

Out[391]: id 216
region 216
party 216
chamber 216
spent 216
raised 216
reelected 214
dtype: int64

In [392]: # Select only dataframes that meet multiple conditions:
df_restricted=df[(df['region']=="South") & (df["chamber"]=="S") & (df["reelected"]==0)]
df_restricted.head(5)

12

Out[392]: id region party chamber spent raised reelected
356 357 South Centre S 199176 436192 0.0
358 359 South Centre S 221402 424304 0.0
392 393 South Left S 1768956 4699994 0.0
394 395 South Left S 1972873 48947 0.0
428 429 South Right S 719563 3231786 0.0

In [5]: # Group and aggregate
grouped=df.groupby(["region", "chamber"])
aggregated=grouped.agg({"spent":['sum','mean', 'min'],

'raised':['sum', 'mean', 'max']})
aggregated

Out[5]: spent raised \
sum mean min sum mean

region chamber
East H 29446708 320072.913043 0 55481753 6.030625e+05

S 7259432 453714.500000 0 12413611 7.758507e+05
North H 21778335 259265.892857 0 39890400 4.748857e+05

S 12482798 520116.583333 0 27547225 1.147801e+06
North-East H 27511352 348244.962025 0 53487404 6.770557e+05

S 13722168 490077.428571 0 43154780 1.541242e+06
South H 29046467 330073.488636 0 56751507 6.449035e+05

S 11140983 557049.150000 40206 22286751 1.114338e+06
West H 30186789 331722.956044 43175 59857901 6.577791e+05

S 6797473 399851.352941 0 15904129 9.355370e+05

max
region chamber
East H 4205366

S 3959212
North H 1773323

S 6263060
North-East H 4091159

S 9790929
South H 3020933

S 4699994
West H 5169778

S 4631824

1.10 Basic visualization

To display graphs inline in Jupyter notebooks make sure you add "%matplotlib inline" in the first
cell.

In [394]: %matplotlib inline
%matplotlib notebook

13

1.10.1 Histograms, comparing two distributions.

In [6]: import matplotlib.pyplot as plt
df_money=df[["raised","spent"]]
plt.figure()
df_money.plot.hist(stacked=True, bins=50)

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x201f099ac88>

<matplotlib.figure.Figure at 0x201f0956eb8>

1.10.2 Scatterplot with linear fit line

In [7]: import numpy as np

x=df_money.raised.values
y=df_money.spent.values
fig, ax = plt.subplots()
fit = np.polyfit(x, y, deg=1)
ax.plot(x, fit[0] * x + fit[1], color='red')
ax.scatter(x, y)

Out[7]: <matplotlib.collections.PathCollection at 0x201f1058cc0>

14

1.10.3 Barplots

In [8]: agg2=grouped.agg({"spent":"mean",
"raised":"mean"})

agg2.plot.bar()

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x201f1072cc0>

15

1.11 Additional resources

1.11.1 Q-Step workshops

Term 1
7 December: Social media data collection and analysis
Working with the Twitter and Facebook APIs, data management, text processing and intro to

text analysis, basic network analysis.
Term 2:
TBA: Data analysis in Python
Covering: Overview of most common packages, descriptive statistics, statistical analysis (re-

gression, etc.), visualization.
TBA: Text analysis in Python
An introduction to text analysis.

1.11.2 Other beginner resources

All very hands-on, excellent for beginners, both in Python and in programming in general.
The Python Tutorial
Learn Python the Hard Way
Dive Into Python 3

16

https://docs.python.org/3/tutorial/index.html
https://learnpythonthehardway.org/book/
http://www.diveintopython3.net/

	Intro to Python for Social Scientists
	Variables, data types and operators
	Operators
	Converting variables from one type to another
	Exercise:

	Data Structures
	Lists
	Other common list operations
	Sets
	Dictionaries

	Indentation
	Loops
	Conditional statements
	Writing functions
	Reading and writing files
	Importing third party modules
	Reading data in different formats
	Basic visualization
	Histograms, comparing two distributions.
	Scatterplot with linear fit line
	Barplots

	Additional resources
	Q-Step workshops
	Other beginner resources

